Exercise 80

The figure shows a lamp located three units to the right of the y-axis and a shadow created by the elliptical region $x^{2}+4 y^{2} \leq 5$. If the point $(-5,0)$ is on the edge of the shadow, how far above the x-axis is the lamp located?

Solution

Let the height of the lamp be h.

Calculate the slope of the upper tangent line.

$$
m=\frac{h-0}{3-(-5)}=\frac{h}{8}
$$

Use the point-slope formula to get an equation for this line.

$$
\begin{aligned}
y-0 & =\frac{h}{8}(x-(-5)) \\
y & =\frac{h}{8}(x+5)
\end{aligned}
$$

Differentiate both sides of the ellipse's equation with respect to x.

$$
\frac{d}{d x}\left(x^{2}+4 y^{2}\right)=\frac{d}{d x}(5)
$$

Use the chain rule to differentiate $y=y(x)$.

$$
2 x+8 y \frac{d y}{d x}=0
$$

Solve for $d y / d x$.

$$
\begin{gathered}
8 y \frac{d y}{d x}=-2 x \\
\frac{d y}{d x}=-\frac{x}{4 y}
\end{gathered}
$$

At the upper point of intersection $\left(x_{0}, y_{0}\right)$, the slope of the tangent line is

$$
\frac{h}{8}=-\frac{x_{0}}{4 y_{0}}
$$

Multiply both sides by 8 .

$$
\begin{equation*}
h=-\frac{2 x_{0}}{y_{0}} \tag{1}
\end{equation*}
$$

To find the upper point of intersection between the tangent line and the ellipse, solve the following system of equations.

$$
\left\{\begin{array}{l}
y_{0}=\frac{h}{8}\left(x_{0}+5\right) \\
x_{0}^{2}+4 y_{0}^{2}=5
\end{array}\right.
$$

Substitute the formula for y_{0} into the second equation.

$$
\begin{gathered}
x_{0}^{2}+4\left[\frac{h^{2}}{64}\left(x_{0}+5\right)^{2}\right]=5 \\
x_{0}^{2}+\frac{h^{2}}{16}\left(x_{0}+5\right)^{2}=5 \\
16 x_{0}^{2}+h^{2}\left(x_{0}+5\right)^{2}=80 \\
16 x_{0}^{2}+h^{2}\left(x_{0}^{2}+10 x_{0}+25\right)=80 \\
\left(16+h^{2}\right) x_{0}^{2}+10 h^{2} x_{0}+25 h^{2}=80 \\
\left(16+h^{2}\right) x_{0}^{2}+10 h^{2} x_{0}+5\left(5 h^{2}-16\right)=0
\end{gathered}
$$

Solve for x_{0} using the quadratic formula.

$$
\begin{gathered}
x_{0}=\frac{-10 h^{2} \pm \sqrt{100 h^{4}-4\left(16+h^{2}\right) 5\left(5 h^{2}-16\right)}}{2\left(16+h^{2}\right)} \\
x_{0}=\frac{-10 h^{2} \pm \sqrt{5120-1280 h^{2}}}{2\left(16+h^{2}\right)} \\
x_{0}=\frac{-10 h^{2} \pm 16 \sqrt{5\left(4-h^{2}\right)}}{2\left(16+h^{2}\right)}
\end{gathered}
$$

As a result,

$$
x_{0}=\frac{-5 h^{2} \pm 8 \sqrt{5\left(4-h^{2}\right)}}{16+h^{2}} .
$$

For the intersection of the ellipse with the upper tangent line in particular, choose the negative sign so that x_{0} is negative.

$$
x_{0}=\frac{-5 h^{2}-8 \sqrt{5\left(4-h^{2}\right)}}{16+h^{2}}
$$

The value of y_{0} corresponding to this value of x_{0} is

$$
\begin{aligned}
y_{0} & =\frac{h}{8}\left(x_{0}+5\right) \\
& =\frac{h}{8}\left[\frac{-5 h^{2}-8 \sqrt{5\left(4-h^{2}\right)}}{16+h^{2}}+5\right] \\
& =\frac{h}{8}\left[\frac{80-8 \sqrt{5\left(4-h^{2}\right)}}{16+h^{2}}\right] \\
& =\frac{10 h-h \sqrt{5\left(4-h^{2}\right)}}{16+h^{2}} .
\end{aligned}
$$

Now substitute this pair of values for x_{0} and y_{0} into equation (1).

$$
h=-\frac{2\left[\frac{-5 h^{2}-8 \sqrt{5\left(4-h^{2}\right)}}{16+h^{2}}\right]}{\frac{10 h-h \sqrt{5\left(4-h^{2}\right)}}{16+h^{2}}}=\frac{10 h^{2}+16 \sqrt{5\left(4-h^{2}\right)}}{10 h-h \sqrt{5\left(4-h^{2}\right)}}
$$

Solve for h.

$$
\begin{gathered}
h\left[10 h-h \sqrt{5\left(4-h^{2}\right)}\right]=10 h^{2}+16 \sqrt{5\left(4-h^{2}\right)} \\
10 \hbar^{2}-h^{2} \sqrt{5\left(4-h^{2}\right)}=10 \hbar^{2}+16 \sqrt{5\left(4-h^{2}\right)} \\
-h^{2} \sqrt{5\left(4-h^{2}\right)}=16 \sqrt{5\left(4-h^{2}\right)} \\
-h^{2} \sqrt{5\left(4-h^{2}\right)}-16 \sqrt{5\left(4-h^{2}\right)}=0 \\
-\left(h^{2}+16\right) \sqrt{5\left(4-h^{2}\right)}=0 \\
\sqrt{5\left(4-h^{2}\right)}=0 \\
5\left(4-h^{2}\right)=0 \\
4-h^{2}=0 \\
h=2
\end{gathered}
$$

